gap> Q := HomalgFieldOfRationals();; gap> a := VectorSpaceObject( 3, Q ); <A vector space object over Q of dimension 3> gap> b := VectorSpaceObject( 4, Q ); <A vector space object over Q of dimension 4> gap> homalg_matrix := HomalgMatrix( [ [ 1, 0, 0, 0 ], > [ 0, 1, 0, -1 ], > [ -1, 0, 2, 1 ] ], 3, 4, Q ); <A 3 x 4 matrix over an internal ring> gap> alpha := VectorSpaceMorphism( a, homalg_matrix, b ); <A morphism in Category of matrices over Q> gap> Display( alpha ); [ [ 1, 0, 0, 0 ], [ 0, 1, 0, -1 ], [ -1, 0, 2, 1 ] ] A morphism in Category of matrices over Q gap> homalg_matrix := HomalgMatrix( [ [ 1, 1, 0, 0 ], > [ 0, 1, 0, -1 ], > [ -1, 0, 2, 1 ] ], 3, 4, Q ); <A 3 x 4 matrix over an internal ring> gap> beta := VectorSpaceMorphism( a, homalg_matrix, b ); <A morphism in Category of matrices over Q> gap> CokernelObject( alpha ); <A vector space object over Q of dimension 1> gap> c := CokernelProjection( alpha );; gap> Display( c ); [ [ 0 ], [ 1 ], [ -1/2 ], [ 1 ] ] A split epimorphism in Category of matrices over Q gap> gamma := UniversalMorphismIntoDirectSum( [ c, c ] );; gap> Display( gamma ); [ [ 0, 0 ], [ 1, 1 ], [ -1/2, -1/2 ], [ 1, 1 ] ] A morphism in Category of matrices over Q gap> colift := CokernelColift( alpha, gamma );; gap> IsEqualForMorphisms( PreCompose( c, colift ), gamma ); true gap> FiberProduct( alpha, beta ); <A vector space object over Q of dimension 2> gap> F := FiberProduct( alpha, beta ); <A vector space object over Q of dimension 2> gap> p1 := ProjectionInFactorOfFiberProduct( [ alpha, beta ], 1 ); <A morphism in Category of matrices over Q> gap> Display( PreCompose( p1, alpha ) ); [ [ 0, 1, 0, -1 ], [ -1, 0, 2, 1 ] ] A morphism in Category of matrices over Q gap> Pushout( alpha, beta ); <A vector space object over Q of dimension 5> gap> i1 := InjectionOfCofactorOfPushout( [ alpha, beta ], 1 ); <A morphism in Category of matrices over Q> gap> i2 := InjectionOfCofactorOfPushout( [ alpha, beta ], 2 ); <A morphism in Category of matrices over Q> gap> u := UniversalMorphismFromDirectSum( [ b, b ], [ i1, i2 ] ); <A morphism in Category of matrices over Q> gap> Display( u ); [ [ 0, 1, 1, 0, 0 ], [ 1, 0, 1, 0, -1 ], [ -1/2, 0, 1/2, 1, 1/2 ], [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ] A morphism in Category of matrices over Q gap> KernelObjectFunctorial( u, IdentityMorphism( Source( u ) ), u ) = IdentityMorphism( VectorSpaceObject( 3, Q ) ); true gap> IsZero( CokernelObjectFunctorial( u, IdentityMorphism( Range( u ) ), u ) ); true gap> DirectProductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] ); true gap> CoproductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] ); true gap> IsOne( FiberProductFunctorial( [ u, u ], [ IdentityMorphism( Source( u ) ), IdentityMorphism( Source( u ) ) ], [ u, u ] ) ); true gap> IsOne( PushoutFunctorial( [ u, u ], [ IdentityMorphism( Range( u ) ), IdentityMorphism( Range( u ) ) ], [ u, u ] ) ); true gap> IsCongruentForMorphisms( (1/2) * alpha, alpha * (1/2) ); true gap> Dimension( HomomorphismStructureOnObjects( a, b ) ) = Dimension( a ) * Dimension( b ); true gap> IsCongruentForMorphisms( > PreCompose( [ u, DualOnMorphisms( i1 ), DualOnMorphisms( alpha ) ] ), > InterpretMorphismFromDinstinguishedObjectToHomomorphismStructureAsMorphism( Source( u ), Source( alpha ), > PreCompose( > InterpretMorphismAsMorphismFromDinstinguishedObjectToHomomorphismStructure( DualOnMorphisms( i1 ) ), > HomomorphismStructureOnMorphisms( u, DualOnMorphisms( alpha ) ) > ) > ) > ); true gap> vec := CapCategory( alpha );; gap> t := TensorUnit( vec );; gap> z := ZeroObject( vec );; gap> IsCongruentForMorphisms( > ZeroObjectFunctorial( vec ), > InterpretMorphismFromDinstinguishedObjectToHomomorphismStructureAsMorphism( z, z, ZeroMorphism( t, z ) ) > ); true gap> IsCongruentForMorphisms( > ZeroObjectFunctorial( vec ), > InterpretMorphismFromDinstinguishedObjectToHomomorphismStructureAsMorphism( > z, z, > InterpretMorphismAsMorphismFromDinstinguishedObjectToHomomorphismStructure( ZeroObjectFunctorial( vec ) ) > ) > ); true gap> right_side := PreCompose( [ i1, DualOnMorphisms( u ), u ] );; gap> x := SolveLinearSystemInAbCategory( [ [ i1 ] ], [ [ u ] ], [ right_side ] )[1];; gap> IsCongruentForMorphisms( PreCompose( [ i1, x, u ] ), right_side ); true
generated by GAPDoc2HTML