gap> C:=Cone( [[1,0,0],[0,1,0],[0,0,1]] ); <A cone in |R^3> gap> C3:=ToricVariety(C); <An affine normal toric variety of dimension 3> gap> Dimension(C3); 3 gap> IsOrbifold(C3); true gap> IsSmooth(C3); true gap> CoordinateRingOfTorus(C3,"x"); Q[x1,x1_,x2,x2_,x3,x3_]/( x1*x1_-1, x2*x2_-1, x3*x3_-1 ) gap> CoordinateRing(C3,"x"); Q[x_1,x_2,x_3] gap> MorphismFromCoordinateRingToCoordinateRingOfTorus( C3 ); <A monomorphism of rings> gap> C3; <An affine normal smooth toric variety of dimension 3> gap> StructureDescription( C3 ); "|A^3"
‣ IsAffineToricVariety ( M ) | ( filter ) |
Returns: true or false
The GAP category of an affine toric variety. All affine toric varieties are toric varieties, so everything applicable to toric varieties is applicable to affine toric varieties.
‣ CoordinateRing ( vari ) | ( attribute ) |
Returns: a ring
Returns the coordinate ring of the affine toric variety vari. The computation is mainly done in ToricIdeals package.
‣ ListOfVariablesOfCoordinateRing ( vari ) | ( attribute ) |
Returns: a list
Returns a list containing the variables of the CoordinateRing of the variety vari.
‣ MorphismFromCoordinateRingToCoordinateRingOfTorus ( vari ) | ( attribute ) |
Returns: a morphism
Returns the morphism between the coordinate ring of the variety vari and the coordinate ring of its torus. This defines the embedding of the torus in the variety.
‣ ConeOfVariety ( vari ) | ( attribute ) |
Returns: a cone
Returns the cone of the affine toric variety vari.
‣ CoordinateRing ( vari, indet ) | ( operation ) |
Returns: a ring
Computes the coordinate ring of the affine toric variety vari with indeterminates indet.
‣ Cone ( vari ) | ( operation ) |
Returns: a cone
Returns the cone of the variety vari. Another name for ConeOfVariety for compatibility and shortness.
The constructors are the same as for toric varieties. Calling them with a cone will result in an affine variety.
generated by GAPDoc2HTML